math: Add cross product
This commit is contained in:
parent
e6e62e3eee
commit
03888187e4
@ -388,10 +388,10 @@ $$\vec{u}\bullet\vec{v}=|\vec{u}||\vec{v}|\cos\theta$$
|
||||
|
||||
Much like regular multiplication, dot products are:
|
||||
|
||||
- communtative — $\vec{u}\bullet\vec{v}=\vec{v}\bullet\vec{u}$
|
||||
- distributive over vectors — $\vec{u}\bullet(\vec{v}+\vec{w})=\vec{u}\bullet\vec{v}+\vec{u}\bullet\vec{w}$
|
||||
- associative over scalars — $(m\vec{u})\bullet(n\vec{v})=mn(\vec{u}\bullet\vec{v})$
|
||||
- $m(\vec{u}\bullet\vec{v})=(mu)\bullet\vec{v}=(mv)\bullet\vec{u}$
|
||||
- communtative: $\vec{u}\bullet\vec{v}=\vec{v}\bullet\vec{u}$
|
||||
- distributive over vectors: $\vec{u}\bullet(\vec{v}+\vec{w})=\vec{u}\bullet\vec{v}+\vec{u}\bullet\vec{w}$
|
||||
- associative over scalars: $(m\vec{u})\bullet(n\vec{v})=mn(\vec{u}\bullet\vec{v})$
|
||||
- $m(\vec{u}\bullet\vec{v})=(m\vec{u})\bullet\vec{v}=(mv)\bullet\vec{u}$
|
||||
|
||||
When working with algebraic vectors, their dot products are equal to the products of their components.
|
||||
$$\vec{u}\bullet\vec{v}=u_xv_x+u_yv_y$$
|
||||
@ -481,6 +481,52 @@ $$
|
||||
|
||||
Vector projections are applied in work equations — see [SL Physics 1](/sph3u7/#work) for more information.
|
||||
|
||||
### Cross product
|
||||
|
||||
The cross product or **vector product** is a vector that is perpendicular of two vectors that are not colinear. Where $\vec{u}_1,\vec{u}_2,\vec{3}$ represent the x, y, and z coordinates of the position vector $\vec{u}$, respectively:
|
||||
$$
|
||||
\begin{align*}
|
||||
\vec{u}\times\vec{v}&=
|
||||
\begin{vmatrix}
|
||||
\hat{i} & \hat{j} & \hat{k} \\
|
||||
\vec{u}_1 & \vec{u}_2 & \vec{u}_3 \\
|
||||
\vec{v}_1 & \vec{v}_2 & \vec{v}_3
|
||||
\end{vmatrix} \\
|
||||
\\
|
||||
&=\hat{j}\begin{vmatrix}
|
||||
\vec{u}_1 & \vec{u}_3 \\
|
||||
\vec{v}_1 & \vec{v}_3
|
||||
\end{vmatrix}
|
||||
-\hat{i}\begin{vmatrix}
|
||||
\vec{u}_2 & \vec{u}_3 \\
|
||||
\vec{v}_2 & \vec{v}_3
|
||||
\end{vmatrix}
|
||||
+\hat{k}\begin{vmatrix}
|
||||
\vec{u}_1 & \vec{u}_2 \\
|
||||
\vec{v}_1 & \vec{v}_2
|
||||
\end{vmatrix} \\
|
||||
\\
|
||||
&=[\vec{u}_2\vec{v}_3-\vec{u}_3\vec{v}_2,\vec{u}_3\vec{v}_1-\vec{u}_1\vec{v}_3,\vec{u}_1\vec{v}_2-\vec{u}_2\vec{v}_1]
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Cross products are:
|
||||
|
||||
- anti-communtative: $\vec{u}\times\vec{v}=-(\vec{u}\times\vec{v})$
|
||||
- distributive: $\vec{u}\times(\vec{u}+\vec{w})=\vec{u}\times\vec{v}+\vec{u}\times\vec{w}$
|
||||
- associative over scalars: $m(\vec{u}\times\vec{v})=(m\vec{u})\times\vec{v}=(m\vec{v})\times\vec{u}$
|
||||
|
||||
The **magnitude** of a cross product is opposite that of the dot product. Where $\theta$ is the smaller angle between the two vectors ($0\leq\theta\leq180^\circ$):
|
||||
$$|\vec{u}\times\vec{v}|=|\vec{u}||\vec{v}|\sin\theta$$
|
||||
|
||||
This is also equal to the area of a parallelogram enclosed by the vectors — where one is the base and the other is the adjacent side.
|
||||
|
||||
To determine the **direction** of a cross product, the right-hand rule can be used. Spreading the fingers out:
|
||||
|
||||
- the thumb is the direction of the first vector
|
||||
- the index finger is the direction of the second vector
|
||||
- the palm faces the direction of the cross product
|
||||
|
||||
## Resources
|
||||
|
||||
- [IB Math Analysis and Approaches Syllabus](/resources/g11/ib-math-syllabus.pdf)
|
||||
|
Loading…
Reference in New Issue
Block a user