math119: add cylindrical, spherical coords
This commit is contained in:
parent
ba60cecc2b
commit
0eadea157d
@ -589,3 +589,49 @@ The **total quantity** if $f$ represents density is:
|
||||
|
||||
$$T=\iiint_Ef(x,y,z)dV$$
|
||||
|
||||
### Cylindrical coordinates
|
||||
|
||||
Cylindrical coordinates are effectively polar coordinates with a height.
|
||||
|
||||
$$
|
||||
x=\rho\cos\phi \\
|
||||
y=\rho\sin\phi \\
|
||||
z=z
|
||||
$$
|
||||
|
||||
$$
|
||||
\rho=\sqrt{x^2+y^2} \\
|
||||
\tan\phi=\frac y x
|
||||
$$
|
||||
|
||||
The Jacobian is still $\rho$.
|
||||
|
||||
!!! example
|
||||
For the volume under $z=9-x^2-y^2$, outside $x^2+y^2=1$, and above the $xy$ plane:
|
||||
|
||||
- $0\leq z\leq 9-x^2-y^2\implies 0\leq z\leq 9-\rho^2$
|
||||
- $1\leq \rho\leq 3$
|
||||
- $0\leq \phi\leq 2\pi$
|
||||
|
||||
$$
|
||||
\int^3_1\int^{2\pi}_0\int^{9-\rho^2}_0\rho\ dz\ d\rho\ d\phi =32\pi
|
||||
$$
|
||||
|
||||
### Spherical coordinates
|
||||
|
||||
Where $r$ is the direct distance from the point to the origin, $\phi$ is the angle to the x-axis in the xy-plane ($[0,2\pi]$), and $\theta$ is the angle to the z-axis, top to bottom ($[0,\pi]$):
|
||||
|
||||
$$
|
||||
z=r\cos\theta \\
|
||||
x=r\sin\theta\cos\phi \\
|
||||
y=r\sin\theta\sin\phi
|
||||
$$
|
||||
|
||||
The Jacobian is $r^2\sin\theta$.
|
||||
|
||||
!!! example
|
||||
The mass inside the sphere $x^2+y^2+z^2=9$ with density $z=\sqrt{\frac{x^2+y^2}{3}}$:
|
||||
|
||||
It is clear that $\tan\theta=\sqrt 3\implies\theta=\frac\pi 3,r=3$. Thus:
|
||||
|
||||
$$\int^3_0\int^{\pi/3}_0,\int^{2\pi}_0 \frac{\rho}{\sqrt{3}}\rho\ d\phi\ d\theta\ d\rho=\frac{243\pi}{5}$$
|
||||
|
Loading…
Reference in New Issue
Block a user