math119: add examples

This commit is contained in:
eggy 2023-02-11 16:14:02 -05:00
parent 47395e06b5
commit 1034a3a350

View File

@ -467,16 +467,97 @@ If the Jacobian contains $x$ and/or $y$ terms:
- they can be substituted into the integral directly, praying that the terms all cancel out - they can be substituted into the integral directly, praying that the terms all cancel out
- or $x$ and $y$ can be written in terms of $u$ and $v$ and then all substituted - or $x$ and $y$ can be written in terms of $u$ and $v$ and then all substituted
!!! example
For the volume within $x^2y^2\sqrt{1-x^3-y^3}$ bounded by $x=0,y=0,x^3+y^3=1$:
By graphical inspection, the bounds can be determined to be $x=0,y=0, y^3=x^3-1,x=1$.
Let $u=x^3,du=3x^2dx$. Let $v=y^3,dv=3y^2dy$. The bounds change to $0\leq u\leq 1,0\leq v\leq 1-u$.
\begin{align*}
\int^1_0\int^{1-u}_0\frac 1 9\sqrt{1-u-v}\ dudv &= \int^1_0\frac{2}{27}(1-v-u)^{3/2}\biggr|^{1-u}_0du \\
&= \int^1_0\frac{2}{27}(1-u)^{3/2}du \\
&= \frac{4}{135}(1-u)^{5/2}\biggr|^1_0 \\
&= \frac{4}{135}
\end{align*}
### Applications of multiple integrals ### Applications of multiple integrals
The area enclosed within bounds $R$ is the volume with a height of 1. The area enclosed within bounds $R$ is the volume with a height of 1.
$$A_R=\iint_R 1\ dA$$ $$A_R=\iint_R 1\ dA$$
!!! example
For the area between $y=(x-1)^2$ and $y=5-(x-2)^2$:
POI: $x^2-3x=0,\therefore x=0, 3$
\begin{align*}
\int^3_0\int^{5-(x-2)^2}_{(x-1)^2}dydx &=\int^3_0(5-(x-2)^2-(x-1)^2)dx \\
&=\int^3_0(-2x^2+6x)dx \\
&=-\frac 2 3x^3+3x^2\biggr|^3_0 \\
&=9
\end{align*}
!!! example
For the area of $\left(\frac x a\right)^2+\left(\frac y b\right)^2=1$ in the region $a,b>0$:
**For ellipses of this form, a direct substitution to $a\rho\cos\phi$ and $b\rho\cos\phi$ is fastest.**
Let $u=\frac x a$ and $v=\frac y b$.
$$
\frac{\partial(x,y)}{\partial(u,v)}=\det\begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix}=ab
$$
Thus $A=\iint_Rab\ du\ dv$.
Let $u=\rho\cos\phi,v=\rho\sin\phi$. Radius is 1 by inspection.
\begin{align*}
A&=\int^{2\pi}_0\int^1_0ab\rho\ d\rho\ d\phi \\
&=\int^{2\pi}\frac 1 2 ab\ d\phi \\
&=\frac 1 2 ab\phi\biggr|^{2\pi}_0 \\
&=\pi ab
\end{align*}
The average value of the function $f(x,y)$ over a region $R$, where $A_R$ is the area of the region: The average value of the function $f(x,y)$ over a region $R$, where $A_R$ is the area of the region:
$$\overline{f}_R=\frac{1}{A_R}\iint_Rf(x,y) dA$$ $$\overline{f}_R=\frac{1}{A_R}\iint_Rf(x,y) dA$$
!!! example
The average value of $x^2+y^2$ over $x=0,x=1, y=x$:
\begin{align*}
\text{avg}&=\frac 1 A\int^1_0\int^x_0(x^2+y^2)dydx \\
&=2\int^1_0(x^2y+\frac 1 3y^3)\biggr|^x_0dx \\
&=2\int^1_0\frac 4 3 x^3dx \\
&=\frac 2 3 x^4 \biggr|^1_0 \\
&=\frac 2 3
\end{align*}
The total "amount" of within a region, if $f(x,y)$ describes the density at point $(x,y)$: The total "amount" of within a region, if $f(x,y)$ describes the density at point $(x,y)$:
$$\iint_R f(x,y)dA$$ $$\iint_R f(x,y)dA$$
!!! example
The total of $x^2+y^2$ with density $\sigma=\sqrt{1-x^2-y^2}$:
Let $x^2=\rho\cos\phi,y^2=\rho\sin\phi$. Thus $\sigma=\sqrt{1-\rho^2}$.
\begin{align*}
M&=\int^{2\pi}_0\int^1_0\sqrt{1-\rho^2}\rho\ d\rho\ d\phi \\
&=\int^{2\pi}_0d\phi\int^1_0\sqrt{1-\rho^2}\ d\rho\ d\phi \\
\end{align*}
Let $u=1-\rho^2$. Thus $du=-2\rho\ d\rho$.
\begin{align*}
m&=2\pi\int^1_0-\frac 1 2\sqrt u du \\
&=\frac 2 3u^{3/2}du\biggr|^1_0 \\
&=\frac 2 3\pi
\end{align*}