2019-11-13 09:55:07 -05:00
# Question 1
```math
2019-11-13 11:22:02 -05:00
\because \angle B^\prime = \angle B \quad (\text{Corresonding Line theorem}) \\
\because \angle C^\prime = \angle C \quad (\text{Corresponding Line theorem}) \\
\therefore \triangle AB^\prime C^\prime \sim \triangle ABC \quad (\text{ AA } \sim) \\ \\
\therefore \dfrac{AB^\prime}{B^\prime C^\prime} = \dfrac{AB}{BC} \\
\quad \\
\therefore \dfrac{30}{14} = \dfrac{30+x}{22} \\ \\
\quad \\
14(30+x) = 22(30) \\
\quad \\
x = \dfrac{22(30)}{14} - 30 \\
\quad \\
x = 17.1428571 \approx 17.14
```
```math
\dfrac{AC^\prime}{B^\prime C^\prime} = \dfrac{AC}{BC} \\
\quad \\
\dfrac{y}{14} = \dfrac{y+15}{22} \\
\quad \\
22y = 14y + 14(15) \\
8y = 14(15) \\
y = 26.25
2019-11-13 09:55:07 -05:00
2019-11-13 14:00:51 -05:00
```
# Question 2
```math
h = b \sin A \\
h = 11.3 \sin 32 \\
h = 5.99 \\
\because h \le 6.8 \le 11.3 \\
\therefore 2 \triangle 's \text{ exist} \\
\text{ Lets call point } T \text{ is the height that is perpendicular on side } AB \text{ and connects to point } C. \text { and } B^\prime \text{ be the other possible point of } B.
```
-------------------------
$`\text{ Case } 1:`$
$`\angle CB^\prime T = \sin^{-1} \Bigl(\dfrac{5.99}{6.8} \Bigr)`$
$`\angle CB^\prime T = 61.75^o`$
$`\angle AB^\prime C = 180 - 61.75 = 118.25^o (\text{ Complentary Angle Theorem})`$
$`\angle ACB^\prime = 180 - 61.75 - 32 = 86.25^o (\text{ASTT})`$
$`\dfrac{AB}{\sin \angle ACB^\prime} = \dfrac{CB^\prime}{\sin A}`$
$`\dfrac{AB}{\sin86.25} = \dfrac{6.8}{\sin 32}`$
$`AB = \dfrac{\sin 86.25 \times 6.8}{\sin32}`$
$`AB = 12.8`$
-------------------------
$`\text{ Case} 2: `$
$`\angle ABC = 61.75`$
$`\angle ACB = 180 - 32 - 61.75 = 86.25^o (\text{ ASTT})`$
$`\dfrac{AB}{\sin C} = \dfrac{CB}{\sin A}`$
$`\dfrac{AB}{\sin 86.25} = \dfrac{6.8}{\sin 32}`$
$`AB =