1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-01-23 16:11:46 -05:00
highschool/Grade 10/Math/MPM2DZ/Trig Quiz 1.md
2019-11-13 19:00:51 +00:00

1.7 KiB

Question 1


\because \angle B^\prime = \angle B \quad (\text{Corresonding Line theorem}) \\

\because \angle C^\prime = \angle C \quad (\text{Corresponding Line theorem}) \\

\therefore \triangle AB^\prime C^\prime \sim \triangle ABC  \quad (\text{ AA } \sim) \\ \\

\therefore \dfrac{AB^\prime}{B^\prime C^\prime} = \dfrac{AB}{BC} \\ 

\quad \\ 


\therefore \dfrac{30}{14} = \dfrac{30+x}{22} \\ \\

\quad \\ 

14(30+x) = 22(30) \\

\quad \\

x = \dfrac{22(30)}{14} - 30 \\

\quad \\

x = 17.1428571 \approx 17.14 

\dfrac{AC^\prime}{B^\prime C^\prime} = \dfrac{AC}{BC} \\

\quad \\

\dfrac{y}{14} = \dfrac{y+15}{22} \\

\quad \\

22y = 14y + 14(15) \\

8y = 14(15) \\

y = 26.25

Question 2


h = b \sin A \\

h = 11.3 \sin 32 \\

h = 5.99 \\

\because h \le 6.8 \le 11.3 \\

\therefore 2 \triangle 's \text{ exist} \\

\text{ Lets call point } T  \text{ is the height that is perpendicular on side } AB \text{ and connects to point } C. \text { and } B^\prime \text{ be the other possible point of } B.
\(`\text{ Case } 1:`\)
\(`\angle CB^\prime T = \sin^{-1} \Bigl(\dfrac{5.99}{6.8} \Bigr)`\)
\(`\angle CB^\prime T = 61.75^o`\)
\(`\angle AB^\prime C = 180 - 61.75 = 118.25^o (\text{ Complentary Angle Theorem})`\)
\(`\angle ACB^\prime = 180 - 61.75 - 32 = 86.25^o (\text{ASTT})`\)
\(`\dfrac{AB}{\sin \angle ACB^\prime} = \dfrac{CB^\prime}{\sin A}`\)
\(`\dfrac{AB}{\sin86.25} = \dfrac{6.8}{\sin 32}`\)
\(`AB = \dfrac{\sin 86.25 \times 6.8}{\sin32}`\)
\(`AB = 12.8`\)

\(`\text{ Case} 2: `\)

\(`\angle ABC = 61.75`\)

\(`\angle ACB = 180 - 32 - 61.75 = 86.25^o (\text{ ASTT})`\)

\(`\dfrac{AB}{\sin C} = \dfrac{CB}{\sin A}`\)

\(`\dfrac{AB}{\sin 86.25} = \dfrac{6.8}{\sin 32}`\)

$`AB =